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Synopsis 

Molecular motion in a polymeric system can be studied using dynamic birefringence. Computer 
interfacing of the dynamic birefringence apparatus and the data treatment using Fourier analysis 
are reported in this paper. Experiments are done under sinusoidal strain; stress, strain and 
birefringence signals are monitored. Birefringence is measured using the optical transmission 
technique. An AIM-65 microcomputer was interfaced with this apparatus for the purposes of data 
acquisition and data analysis. First-order Fourier coefficients are used to determine the real and 
imaginary components of the modulus, the strain optical coefficient, and the stress optical 
coefficient. Higher order Fourier coefficients can be used to study the nonlinear viscoelastic 
behavior in the polymer. 

INTRODUCTION 
Several methods are used to understand the mechanism of molecular 

motion in polymers. Some of the prominent techniques are dynamic mechani- 
cal tests, dielectric studies, NMR, dynamic light and X-ray scattering, dy- 
namic infrared spectroscopy, and dynamic birefringence. Dynamic mechanical 
and dielectric tests are the most extensively used techniques for the study of 
molecular dynamics. Developments in the field of dynamic light'-3 and X-ray 
sca t t e~ ing ,~ -~  dynamic infrared spectroscopy,7. a and dynamic birefr ingen~e~-~~ 
are relatively limited. It is highly unlikely that in any polymer information 
revealed by all these techniques will be the same. Certain mechanisms of 
molecular motion may be revealed by a number of techniques, while others 
may be more sensitive to one test and comparatively less or not at all sensitive 
to others. Read" has shown for poly(methy1 methacrylate) that dynamic 
mechanical tests would only show a single relaxation process in the j3 region, 
but a dynamic mechanical test complemented by a dynamic birefringence test 
reveals that there are two relaxation processes (in the /3 region of PMMA) 
rather than one (Fig. 1 of reference 17). In a study on polyacrylonitrile, it was 
found that NMR is sensitive only to the lower of the two principal mechanical 
 transition^.^^ These examples help to illustrate the fact that in order to 
understand the mechanism of molecular motion well enough, one must per- 
form the tests using more than one technique. 
The previous methods for measuring dynamic birefringence are (i) strobo- 

scopic techniq~e,'~ (ii) Lissajou figure t e c h n i q ~ e , ~ , ~ ~  and (iii) a-sector tech- 
n i q ~ e . ~ ~  
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Recently we have interfaced a microcomputer (AIM-65) to our dynamic 
birefringence apparatus for the purposes of data acquisition and data analysis. 
The data analysis is done using Fourier analysis. The instrumental develop- 
ment is reported in this paper. This apparatus has been used to study the 
dynamic birefringence behavior of acrylonitrile copolymers, findings of which 
are reported in the following p~blication.’~ 

THEORY 

Fourier Analysis 

A periodic function can be expressed in terms of a Fourier series, as 

m 
Y(t) = Y o  + AYk*(iw)eaukt 

k-1 

where AYk* are Fourier coefficients, given by 

The first-order Fourier coefficient is given by 

Yl* = Yo + Y;sin ot + iYFcos a t  

For more than one signal, eq. (3) can be generalized as 

Y[* = Yo + Y[sin o t  + iyrcos o t  (4) 

where j = 1,2, or 3 for strain, stress, and birefringence in the present case. If 
the strain signal is given by 

where 

= €‘Sin ot + d‘cos a t  

= E O C O S e  

= EoSin e 

Similarly, if stress is 

u = uosin( ot + 0 + 6‘ + 6 )  

then 

u = u’sin w t  + u”c0s w t  (7) 
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Fig. 1. Sixty-four data points on a ainusoidal signal. 

and 

a' = a,,cos( 8 + 6 + 6') 

a" = a,&( 8 + 6 + 6') 

Similarly, for birefringence one can write 

An' = Anocos(8 + a + a') 
An" = An,&( 8 + a + a') 

where 6 and a are the phase differences in the sample bc-men stress-strain 
and birefringence-strain, respectively, and 6' and a' are the corresponding 
instrumental phase differences. a and 6 can be determined after corrections 
for a' and 6' are applied. 

In eq. (2) the q ' s  are the data points as shown in Figure 1. In eq. (2) in our 
studiea rn was chosen to be 64; however, it can be changed. Y[ represents 
various signals in the following manner: 

Using this terminology, modulus, stress-optical coefficient, and strain-optical 
coefficients are given by the following equation: 

yf . yi' + y;" . y r  

(Yi')' + ( Y r ) 2  

yy . y;' - yi" . yy 
A ,  = + i  (10) 

( Yi")2 + ( Y r ) 2  

where A& = modulus ( E * ) ,  A& = streas-optical coefficient (C*), and A& = 



1696 KUMAR AND STEIN 

strain-optical coefficient ( K * )  and the loss tangents would be given by the 
following equation 

where Q21 = mechanical loss angle (a), Q31 = phase difference between bire- 
fringence and strain (a) ,  and Qa2 = phase difference between birefringence 
and stress (a - 6). 

Theoretically, higher order Fourier coefficients can be used to study the 
nonlinear viscoelastic nature of the material. If the departures from linear 
viscoelastic behavior are small, and, if one is using the analog signal for data 
analysis, the study of nonlinear viscoelastic behavior is difficult. But with 
digitized data and automated data acquisition techniques, one could collect 
data over a large number of cycles and thereby reduce the error. However, the 
accuracy would still be limited because of the resolution of the analog to 
digital converter and signal to noise ratio. If we apply a sinusoidal strain 
E( t) = €,sin ot to a sample, then under nonlinear viscoelastic response, stress, 
and birefringence would be given by the following equations: 

u( t )  = to [ E’( w)sin w t  + E”( w)cos w t  + ~’(2w)sin 2wt 

+E”(2w)cos2wt + * * ] (124 

An = co [ K’( @)sin at + K ”( o)cos w t  + K’(2w)sin 2 w t  

+K”(2w)cos2wt + . . . ] (12b) 

where E’, E”, K’, and K” are the real and imaginary parts of the modulus 
and strain optical coe5cients, respectively. The modulus and other parame- 
ters calculated from higher order harmonics in Fourier series should compare 
with the same parameter obtained from the first order Fourier coefficients at  
the corresponding high frequency. However, such an analysis was not done on 
our present setup for the previously mentioned limitations. The work reported 
in this and the following paper was carried out during 1980-1981. Recently 
Tanaka et al.26 have indeed used the Fourier analyses technique for nonlinear 
dynamic birefringence study on polymers. 

Birefringence 

The birefringence measurement is done using the method of optical trans- 
mission. For a nonscattering, nonabsorbing, birefringent sample, the fractional 
transmission for monochromatic light between crossed polarizers with their 
polarization axis at 45” to the optic axis of the sample is 

T = sin2( 6/2) (13) 

where 6 is the retardation of the sample given by 

6 = 2a(d/A)A 
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for a sample of thickness d and birefringence A with light of wavelength A. In 
the actual case some amount of absorbance, reflectance and transmittance is 
always present. Therefore, eq. (13) is modified as follows: 

T = Fsin2( 6/2) + T, (14) 

where F is the attenuation of the light beam resulting from reflection, 
absorption, and scattering which is given by 

where K is the absorption coefficient, T the turbidity, and r the reflectivity of 
the sample. The quantity T, is the transmittance of the sample arising from 
(a) depolarization of the transmitted light resulting from the presence of 
locally birefringent structures such as spherulites and (b) the low angle light 
which can reach the photomultiplier tube and which is measured along with 
1- because of its admitting light diverging up to some finite angle. This 
term gives rise to trammission, even if there is no macroscopic birefringence 
and may change with elongation and consequently wil l  vary during a dynamic 
birefringence experiment. 

The quantity F may be estimated by measuring the transmittance of the 
sample with the analyzing polarizer removed. An approximate way to esti- 
mate T, is to measure the transmittance when polarizer and analyzer are 0” 
and 90’ to the optic axis. 

If do is the thickness of the sample in the unstrained state, (L /Lo)  is the 
static draw ratio, and co  is the amplitude of the dynamic strain ( c o  -=x l), then 
thickness d at any time t during sinwidal vibration can be approximated 
(under the assumption of constant volume deformation) according to the 
following equation: 

d = dO(~5/Lo)-”~[l - (c0/2)sinwt] 

DESCRIPTION OF THE APPARATUS 

A block diagram of the apparatus is given in Figure 2. It consists of an 
He-Ne laser, polarizer, compensator, analyzer, photomultiplier tube, sample 
chamber (heating and cooling arrangement), a JP series load cell (from Data 
Instruments Inc.), a DC-DC linear variable differential transformer (LVDT), 
encorder, belt and pulley system, amplifiers, analog to digital converter, 
microcomputer AIM 65 (Rockwell International), and oscilloscope. The en- 
corder is used to send two types of pulses: (i) an index pulse (1 pulse per 
revolution) and (ii) 512 pulses per revolution. It is attached with the belt and 
pulley system in such a way so that the rotation frequency of the encorder 
and the vibration frequency of the sample are the same. The belt and pulley 
system is used to change the frequency. A series of cams was used to change 
the amplitude of the sinwidal vibration. The strain signal from the linear 
variable differential transformer, the stress signal from the load cell, and the 
birefringence signal from the photomultiplier tube (PMT) are amplified. The 
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Fig. 2. Block diagram of the apparatus: (2) polarizer; (3) compensator; (4) LVDT; (5) load cell; 
(13) encorder. 

amplified signals can either be seen on the oscilloscope or stored in the 
computer after it is digitized by an analog to digital converter. The A to D 
converter is a MDASSD from Date1 System, Inc. Originally the AIM-65 
microcomputer had 4K (byte) random access memory (RAM) which was 
extended to 36K (byte) RAM using a memory extension board (Model 6502 
DM from Beta Computer Devices) of 32K. The AIM-65 microcomputer has a 
volatile memory; thus, to record the programs, a Radio Shack “Realistic” 
audio cassette tape recorder was used. For the purpose of dynamic birefrin- 
gence experiments, two programs are written: (i) in assembly language for 
data acquisition [points yE’s of eq. (2) are the data points] and (ii) in basic 
language for data analysis to determine A,,% of eq. (10) and tan Qi,’s of eq. 
(11)- 

CALIBRATION 

The calibration of the LVDT is done using a series of cams of known 
amplitude, and the load cell is calibrated by applying known weights to it. 
The calibration of PMT is relatively more difficult. As described previously, 
the transmittance of light varies according to eq. (14) as is pictorially shown in 
Figure 3. A, B, and C are three points on an approximately linear portion of 
the curve. For ease of analysis it will be best if the total retardation in the 
path of light oscillates within the limits of A and B. This is adjusted using 
the Berek compensator. If the total retardation of the sample at  a given 
amplitude of vibration is such that the transmittance of light fluctuates more 
than AB, then calibration is relatively more complicated. To calibrate (within 
AB) PMT, known amounts of retardation are introduced using the Berek 
compensator and thus the slope of the line AB is determined. 
As previously indicated, the encorder sends two types of pulses: (a) an index 

pulse, 1 pulse per cycle, and (b) 512 pulses per cycle. An index pulse is used at 
the beginning of the first cycle to instruct the computer when to start the 
data acquisition. For each of the three signals we are taking 64 data points per 
cycle. Thus, of the 512 pulses, data is taken on 64 x 3 = 192 pulses at  equal 
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intervals in each signal. At  the first of the 512 pulses, strain, at  the second 
pulse, stress, and at the third pulse, birefringence, are taken. The next five 
pulses are skipped. The second data points of strain, stress, and birefringence 
are taken at the 9th, loth, and 11th p u ' h ,  respectively. In this way for Z = 1 
to 64, strain, stress, and birefringence signals are taken at the [8(Z - 1) + llth, 
[8(1 - 1) + 2]th, and [8(Z - 1) + 31th pulses, respectively. This data is aver- 
aged over the number of cycles. The measurements of the three signals are not 
simultaneous. The above mechanism of data acquisition introduces a phase 
difference of 2n/512 between strain and stress, and that of 4a/512 between 
strain and birefringence. The correction for these phase differences is neces- 
sary and has been done in our computer program. If a: and AfiZ are the 
uncorrected Fourier coefficients of Kth order in the equation of stress and 
birefringence, then their phase corrected values are given by the following 
equations: 

In order to determine whether any other instrumental phase difference 
occurs in addition to the one8 discussed above, two tests were conducted: (i) 
stress-strain data were collected for a steel spring at 0.6% sinusoidal strain 
and (ii) strain-birefringence data was collected for rubber strips at  0.6% 
sinusoidal strain. At these low levels of strain amplitude, it is expected that 
strain and stress would be in phase for the metallic strip and that strain and 
birefringence would be in phase for the rubber sample. The phase difference 
results for both of these tests are given in Figure 4, in terms of the values of 6 
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Fig. 4. Instrumental phase difference between (i) strain-stress ((~)6') and (ii) strain- 
birefringence ((0) a'). 

and a by which strain lags stress and birefringence. These values arise 
essentially because of the response time of the LVDT, and correction for 
which is applied to the experimental data. This apparatus was used to study 
the molecular motion in acrylonitrile copolymers. Results of this study are 
reported in a separate publication.26 
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